
Learning Multirobot Joint Action Plans from Simultaneous
Task Execution Demonstrations

Murilo Fernandes Martins
Dept. of Elec. and Electronic Engineering

Imperial College London
London, UK

murilo@ieee.org

Yiannis Demiris
Dept. of Elec. and Electronic Engineering

Imperial College London
London, UK

y.demiris@imperial.ac.uk

ABSTRACT
The central problem of designing intelligent robot systems
which learn by demonstrations of desired behaviour has been
largely studied within the field of robotics. Numerous archi-
tectures for action recognition and prediction of intent of a
single teacher have been proposed. However, little work has
been done addressing how a group of robots can learn by
simultaneous demonstrations of multiple teachers.

This paper contributes a novel approach for learning mul-
tirobot joint action plans from unlabelled data. The robots
firstly learn the demonstrated sequence of individual actions
using the HAMMER architecture. Subsequently, the group
behaviour is segmented over time and space by applying a
spatio-temporal clustering algorithm.

The experimental results, in which humans teleoperated
real robots during a search and rescue task deployment,
successfully demonstrated the efficacy of combining action
recognition at individual level with group behaviour segmen-
tation, spotting the exact moment when robots must form
coalitions to achieve the goal, thus yielding reasonable gen-
eration of multirobot joint action plans.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design, Experimentation

Keywords
Learning by Demonstration, Multirobot Systems, Spectral
Clustering

1. INTRODUCTION
A substantial amount of studies in Multirobot Systems

(MRS) addresses the potential applications of engaging mul-
tiple robots to collaboratively deploy complex tasks such as
search and rescue, distributed mapping and exploration of
unknown environments, as well as hazardous tasks and for-
aging – for an overview of the field, see [13]. Designing
distributed intelligent systems, such as MRS, is a profitable

Cite as: Learning Multirobot Joint Action Plans from Simultaneous Task
Execution Demonstrations, M. F. Martins, Y. Demiris, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: The P3-AT mobile robots used in this
paper, equipped with onboard computers, cameras,
laser and sonar range sensors.

technology which brings benefits such as flexibility, redun-
dancy and robustness, among others.

Similarly, a substantial amount of studies have proposed
numerous approaches to robot Learning by Demonstration
(LbD) – for a comprehensive review, see [1]. Equipping
robots with the ability to understand the context in which
they interact without the need of configuring or program-
ming the robots is an extremely desired feature.

Regarding LbD, the methods which have been proposed
are mostly focussed on a single teacher, single robot sce-
nario. In [7], a single robot learnt a sequence of actions
demonstrated by a single teacher. In [12], the authors pre-
sented an approach where a human acted both as a teacher
and collaborator to a robot. The robot was able to match the
predicted resultant state of the human’s movements to the
observed state of the environment based on its underlying
capabilities. A supervised learning method was presented
in [4] using gaussian mixture models, in which a four-legged
robot was teleoperated during a navigation task.

Few studies addressed the prediction of intent in adver-
sarial multiagent scenarios, such as the work of [3], in which
group manoeuvres could be predicted based upon existing
models of group formation. In the work of [5], multiple
humanoid robots requested a teacher’s demonstration when
facing unfamiliar states. In [14], the problem of extracting
group behaviour from observed coordinated manoeuvres of
multiple agents along time was addressed by using a clus-
tering algorithm. The method presented in [9] allowed a
single robot to predict the intentions of 2 humans based on
spatio-temporal relationships.

However, the challenge of designing an MRS system in
which multiple robots learn group behaviour by observation

931

931-938



of multiple teachers concurrently executing a task was not
addressed hitherto.

This paper presents a novel approach for LbD in MRS
– the Multirobot Learning by Demonstration (MRLbD) –
in which multiple robots are capable of learning task so-
lution procedures (denominated as multirobot joint action
plans) by observing the simultaneous execution of desired
behaviour demonstrated by humans. This is achieved by
firstly learning a demonstrated sequence of actions at single
robot level, and subsequently applying a Spectral Cluster-
ing (SC) algorithm to segment the group behaviour. Lastly,
a multirobot joint action plan is generated by combining
the actions at single robot level with the segmented group
behaviour, resulting in a sequence of individual actions for
each robot, as well as joint actions that require coalition
formation.

The remainder of this paper is organised as follows: Sec-
tion 2 discusses the issues that must be addressed when de-
signing an MRLbD system. In Section 3, the teleoperation
platform, developed to allow remote control of real robots
(pictured in Fig. 1) engaged in a realistic search and res-
cue activity, is detailed. This section also describes how
the HAMMER architecture [7] and an implementation of
the SC algorithm proposed by [14] were utilised to tackle
the action recognition and group behaviour segmentation
issues. Then, Section 4 describes the experimental tests car-
ried out to demonstrate the multirobot plan generation, and
Section 5 analyses the results obtained. Finally, Section 6
presents the conclusions and further work.

2. SYSTEM DESIGN ISSUES
The MRLbD architecture proposed in this paper is based

upon a platform for robot teleoperation, which design was
inspired by the work of [8] and [16], as well as the LbD
architectures presented in [7], [9].

The design of any MRS encompasses common issues within
this field of research. In particular, systems for robot tele-
operation bring forth three central design issues, which are
discussed in the following sections.

2.1 Human vs. robot-centred perception
Platforms for teleoperation usually provide restricted per-

ception of the remote environment in which a robot is in-
serted. However, depending upon the application and the
environment, the human can be strategically positioned in
such a way that global, unrestricted observation is feasible.

The first design issue to be addressed is the human vs.
robot-centred perception: should the human be allowed to
observe the world with own senses; or should they have their
perception restricted to robot-mediated data.

While the former statement results in a simplified system,
the potential applications of MRS aforementioned inevitably
fall into the latter. The teleoperation platform implemented
in this work is therefore based upon having a restricted per-
ception of the environment, providing the human with the
same remote perception that the robot can acquire locally
through its sensors (the human is “placed into the robots’
perceptual shoes”).

2.2 Observations of human behaviour
Another key issue in designing a teleoperation platform

is related to how to define the commands that are sent to
the robot. The human actions are not directly observable to

Possible human actions

push object search for
object

move

wander

observable data

series of joystick commands

actions
to be

inferred

Figure 2: Human actions space vs. observable data
diagram.

the robots. Although the humans are “placed in the robots’
perceptual shoes”, a robot has access only to its teleoperator
manoeuvre commands, rather than the human’s intended
actions, as illustrated in Fig. 2.

Two straightforward possibilities arise: send commands
which represent the robot’s underlying capabilities; or send
control signals, such as motor commands to the robots.

The former assumption is coherent with most LbD meth-
ods, as the robot’s primitive behaviours are used to match
to actions observed by the robots. However, the human
would be limited to few, inflexible handcrafted actions pro-
grammed into the robots, which are usually application spe-
cific, and also dependent upon the robot’s design.

Conversely, the latter possibility allows humans to play
with a full repertoire of actions, only restricted to environ-
mental conditions. The teleoperation platform herein de-
scribed makes use of this feature, even though matching
motor commands to the robot’s primitive behaviours is a
more complex issue.

A key feature which strongly motivated this decision is due
to the gain of flexibility, allowing the presented approach
to be applied to distinct robots, such as unmanned aerial
vehicles and wheeled-mobile robots, in a handful of potential
applications in the field of MRS with little or no modification
required.

2.3 Action recognition at single robot level
When addressing the problem of recognising observed ac-

tions, a mismatch between observed data and robot internal
states might happen. This is a common issue known as the
correspondence problem [10].

Even though the robot is able to passively observe the ac-
tions being performed by the human operator using its own
sensors, mapping manoeuvre commands to robot primitive
behaviours inevitably falls into the correspondence problem.
Recognising actions from observed data when using a tele-
operation platform becomes even more challenging, as the
state of the environment is only partially observable. Thus,
important variables may not be present at a particular ob-
servation of the state of the environment.

Furthermore, human actions have deliberative and reac-
tive components. During task execution, a human delib-
erately actuates on the joystick in order to manoeuvre the
teleoperated robot. In addition, sudden changes in the per-
ceived environment (e.g., a moving obstacle appears in front
of the robot) result in a reactive behaviour of the human, at-
tempting to change the robot’s course. Likewise, the human

932



I1 

I2 

In 

F1 

F2 

Fn 

state s 

(at t) 

M1 

M2 

Mn 

Prediction 

verification 

(at t+1) 

Prediction 

verification 

(at t+1) 

Prediction 

verification 

(at t+1) 

P1 

P2 

Pn 

…
 

…
 

Figure 3: Diagramatic statement of the HAMMER
architecture. Based on state st, multiple inverse
models (I1 to In) compute motor commands (M1 to
Mn), with which the corresponding forward models
(F1 to Fn) form predictions regarding the next state
st+1 (P1 to Pn) which are verified at st+1.

may perform certain actions sequentially or simultaneously
resulting in a combination of actions, while the robot has
access to the joystick commands only.

In order to recognise actions from observed data and ma-
noeuvre commands, this paper makes use of the Hierarchical
Attentive Multiple Models for Execution and Recognition
(HAMMER) architecture [7], which has been proven to work
very well when applied to distinct robot scenarios. HAM-
MER is based upon the concepts of multiple hierarchically
connected inverse-forward models. In this architecture, an
inverse model has as inputs the observed state of the en-
vironment and the target goal(s), and its outputs are the
motor commands required to achieve or maintain the target
goal(s). On the other hand, forward models have as inputs
the observed state and motor commands, and the output
is a prediction of the next state of the environment. As
illustrated in Fig. 3, each inverse-forward pair results in a
hypothesis by simulating the execution of a primitive be-
haviour, and then the predicted state is compared to the
observed state to compute a confidence value. This value
represents how correct that hypothesis is, thus determining
which robot primitive behaviour would result in the most
similar outcome to the observed action.

3. SYSTEM IMPLEMENTATION
The MRLbD approach proposed in this paper is demon-

strated using the aforementioned platform for robot teleop-
eration, which consists in a client/server software written
in C++ to control the P3-AT robots (Fig. 1) utilised in
the experiments, as well as an implementation of the HAM-
MER architecture for action recognition and a Matlab im-
plementation of the SC algorithm similar to the one pre-
sented in [14]. An overview of the teleoperation platform
can be seen in Fig. 4.

The server software comprises the robot cognitive capa-
bilities and resides on the robot’s onboard computer. The
server is responsible for acquiring the sensor data and send-
ing motor commands to the robot, whereas the client soft-
ware runs on a remote computer and serves as the interface
between the human operator and the robot.

3.1 The robot cognitive capabilities
Within the Robot cognitive capabilities block, the server

communicates with the robot hardware by using the well-
known robot control interface Player [6], which is a network
server that works as a hardware abstraction layer to interface

Human-robot 

interface 
Robot cognitive capabilities 

WiFi 

network 
Joystick 

Visualisation 

Robot control 

Environment 

perception 

Player 

Server 

Logging 

Robot 

hardware 

Plan Extraction 

Action recognition 

(HAMMER) 

Group behaviour 

segmentation 

Multirobot plan 

Figure 4: Overview of the teleoperation platform
developed in this paper.

with a variety of robotic hardware.
Initially, the internal odometry sensors are read. This

data provides the current robot’s pose, which is updated as
the robot moves around and used as the ground truth pose
for calculating objects’ pose and building the 2D map of the
environment. Odometry sensors are known for inherently
adding incremental errors and hence lead to inaccurate pose
estimations; but nevertheless, it is shown later on in Sec-
tion 5 that this inaccuracy was immaterial to the results.

The image captured (320x240 pixels, coloured) from the
robot’s camera (at 30 frames per second) is compressed using
the JPEG algorithm and sent to the client software over a
TCP/IP connection using the Wi-Fi network.

Additionally, the image is also used to recognise objects
based upon a known objects database, using the approach
presented in [15]. This algorithm consists in detecting the
pose (Cartesian coordinates in the 3D space, plus rotation on
the respective axes) of unique markers. The known objects
database comprises a set of unique markers and the object
that each marker is attached to, and also offset values to
compute the pose of the object based upon the detected
marker’s pose.

A short memory algorithm, based upon confidence levels,
was also implemented to enhance the object recognition; the
object’s pose is tracked for approximately 3 seconds after it
has last been seen. This approach was found extremely use-
ful during the experiments, as the computer vision algorithm
cannot detect markers from distances greater than 2 metres
and occlusion is likely to happen in real applications.

The Sick LMS-200 laser range scanner provides millimetre-
accuracy distance measurements (from up to 80 metres),
ranging from 0 degrees (right-hand side of the robot) to 180
degrees (left-hand side). In addition, 16 sonar range sen-
sors, placed in a ring configuration on the robot, retrieve
moderately accurate distance measurements from 0.1 to 5
metres and a 30-degree field of view each. Despite the lack
of precision, the sonar sensors play a fundamental role in
the overall outcome of the teleoperation platform: as the
human operator has limited perception of the environment,
particular manoeuvres (mainly when reversing the robot)
may be potentially dangerous and result in a collision. Thus,
obstacle avoidance is achieved by using an implementation
based upon the well-known algorithm VFH (Vector Field
Histogram) [2]. However, the human operator is able to
inhibit the sonar readings as desired, feature which is use-
ful when pushing objects, passing through narrow gaps and

933



doorways.
In addition, joystick inputs are constantly received from

the client and translated into motor commands (transla-
tional and rotational speeds), which are then sent to the
robot through the Player interface.

Lastly, all the data manipulated by the server is incre-
mentally stored in a log file every 0.5 seconds. The log file
comprises a series of observations made by the robot dur-
ing task execution, which are composed of the following el-
ements: time stamps in the Unix time format; robot’s pose
based on odometry data; list of pose of objects recognised
and their unique identification; laser and sonar range sensor
readings; and finally, joystick inputs and motor commands.

3.2 The human-robot interface
The client software constitutes the human-robot interface,

in which the visualisation module displays to the human op-
erator the sensor data which is received from the server.
This data comprises the robot’s onboard camera, battery
level and Wi-Fi signal strength, sonar and laser range scan-
ners, and the robot’s pose based upon odometry sensors.

The image is decompressed and displayed in a dedicated
window, while a second window shows a sketch of the robot
in the centre, as well as sonar and laser data. A screenshot
of the human-robot interface can be seen in Fig. 5.

Furthermore, line segments are extracted from the laser
data (using an implementation of the Split-and-Merge algo-
rithm described in [11]) and displayed on top of the raw laser
data. These line segments are mostly red-coloured, apart
from line segments which width coincides with a known ob-
ject’s width; these segments become blue-coloured. This
colour differentiation is not yet used by the robots, but it is
meant to be used as an attention mechanism for the opera-
tor which highlights probable objects of interest based upon
their shape.

Also, in case another robot is recognised, then a blue-
coloured ellipse boundary representing the observed robot’s
pose is displayed; a green-coloured circle border is printed
otherwise. Note that the size of these shapes are scaled
according to the real size of the objects.

In addition, an image on the top-right side of the main
window displays the map of the environment, which is incre-
mentally built using laser and odometry data. This visuali-
sation was found substantially useful for location awareness
when navigating throughout the corridor and rooms.

In the meantime, the human actively teleoperates the
robot by controlling translational and rotational speeds via
joystick inputs.

At the end of a task execution, the log files stored by both
robots are sent to the Plan Extraction block. Within this
block, the actions performed by the humans at single robot
level are recognised by using the HAMMER architecture,
and group behaviour segmentation is achieved by applying
the SC algorithm, as described in the following sections.

3.3 The HAMMER architecture
The implementation of the HAMMER architecture for

this paper makes use of five inverse-forward model pairs,
defining the robots’ underlying capabilities. These pairs are:
Idle (the robot does not make any movement), Search (the
robot explores the environment looking for a particular type
of object), Approach (the robot approaches a specific object
once it is found), Push (the robot moves a particular object

Figure 5: A screenshot of the human-robot inter-
face; camera is shown on top-left, while the 2D map
can be seen on top-right. A box (green circle) and
a robot (blue ellipse) were also recognised and dis-
played on the main window.

to a determined area known a priori) and Dock (the robot
navigates back to its base). In this implementation, the
state of the environment is defined by the spatio-temporal
relationship between the robot and the objects it recognises
at each iteration.

The inverse models are hand-coded primitive behaviours
which compute a navigation path using the clamped cubic
splines algorithm, based upon the current observed state of
the environment and the desired target. As an example of
the Approach inverse model, given a partial observation of
the environment where the robot recognises an object, the
inverse model outputs motor commands such that causes
the robot to move towards the object.

Similarly, the forward models were hand-coded procedures
based upon the differential drive kinematics model of the
robot. Given the motor commands, the forward models
output a prediction of the next state for the correspon-
dent inverse models. Recalling the example describing the
Approach inverse model, the correspondent forward model,
based on the motor commands, predicts that the robot should
be closer to the object at the next state.

It is worth noticing that the inverse models are indepen-
dent of each other. While each inverse model has its internal
conditions which must be satisfied (e.g., to push an object,
the robot must recognise and be close enough to the object),
there are no interdependence between inverse models. This
means that an inverse model does not influence or inhibit
others (e.g., there is no rule defining that Push must be
preceded by Approach). Thus, forward models can formu-
late a hypothesis by simulating the execution of the inverse
models.

This is a key advantage of the HAMMER architecture, in
contrast with other approaches, such as [12], in which the
mapping from observations to primitive behaviours relies on
task-dependent, static preconditions for a given behaviour.

3.4 Group behaviour segmentation
In most of the intelligent systems involving multiple enti-

ties (e.g., virtual agents, robots, humans, cars and so forth),
the data obtained is often represented in the spatial domain.

934



Figure 6: Map of the real environment where exper-
iments were performed: Green area (1) indicates the
robots’ base, while beige (2) shows the area where
the box is randomly located at the start; the blue
(3) area denotes the desired final location of the box.
X and Y axes are also annotated.

This data is usually collected in large scale (e.g., hours of
video images from CCTV cameras), which increases the dif-
ficulty in extracting the desired information. In such cases,
techniques for clustering the data into smaller groups are
usually utilised.

As a large amount of data, comprising spatial and tempo-
ral information of multiple robots and objects, is obtained
from the demonstrations of desired group behaviour, this
paper makes use of the SC algorithm presented in [14].

In [14], the authors extended the SC to the time domain
by redefining the affinity measure in order to incorporate
the time component. In addition, a temporal sample num-
ber NT is defined to counter the problem of varying sam-
pling frequency, which is advised to be much smaller than
the number of observations contained in the log files. The
affinity measure proposed by [14] makes use of two distinct
scaling parameters: σS for spatial normalised cuts and σT

for temporal normalised cuts, in contrast with traditional
clustering algorithms. These parameters play an important
role in the SC algorithm, balacing spatial and temporal cuts,
thus favouring either spatial or temporal segmentation.

The parameter values adopted in the implementation of
the SC algorithm for this paper were NT = 100, NS = 8
and σT = 0.1. These values were thoroughly determined
based upon the results shown in [14] and in such a way that
neither spatial not temporal segmentations would be priori-
tised, therefore preserving the generality of the algorithm
when applied to different contexts and tasks.

Also, the 2 events added to the SC algorithm were care-
fully defined based upon the known objects recognised by
the robots during the experiments, as a means of facilitating
the group behaviour segmentation. The event SEESBOX
occurred every time the robot recognised a box within its
field of view, while the event SEESROBOT occurred when
the robot recognised its group mate. The importance value
of both events was set to 1. No other events were taken into
account in order to ensure that the algorithm would not be
tailored to the task performed.

3.5 Multirobot plan generation
In this paper the output of the SC algorithm, which rep-

resents the group behaviour segmented over time and space,
is combined with the recognised actions at single robot level
in order to build multirobot action plans. This work hence
moves a step further from the work of [14], where the output
of the SC was not used in any subsequent stage, but only
displayed on graphs for human analysis.

Firstly, the log files of each robot are processed by the

HAMMER architecture. Based upon the prediction P of
each forward model, a coherence verification is made. This
verification returns a binary similarity value (either 0 or 1),
which describes whether the correspondent inverse would
result in a similar observed state. At this state, the predic-
tion P of more than one inverse-forward model pair may be
coherent with the observed state. As an example, a robot
might be moving towards a particular object, but its move-
ment could also be towards its base, causing both Approach
and Dock inverse-forward model pairs to output coherent
predictions. This issue is drastically minimised by provid-
ing the robot a spatio-temporal awareness at group level,
using the SC algorithm.

Each cluster obtained from the SC algorithm encompasses
a segment of the group behaviour. However, a case in which
only one robot composes a cluster might happen. A sequence
of group actions is generated for each robot independently.
At first, it is assumed that the robot is performing a group
action, regardless which action it might be. The execution
of this group action terminates when a transition between
clusters is observed, hence causing an action transition. The
next group action then starts, and this procedure takes place
until the last segmented cluster, representing the end of the
task execution. As a result, the group action sequence of
both robots over time is properly determined.

Possessing the group action sequence over time for each
robot, as well as the actions at single robot level recognised
by the HAMMER architecture, a multirobot joint action
plan can then be generated. This plan comprises a sequence
of actions at single robot level, with specific times to start
and end action execution, that each robot should perform
along time as an attempt to achieve the same goals of the
task execution formerly demonstrated.

Actions at single robot level are defined based upon the
forward model predictions and start/end times, which are
obtained from the sequence of group actions. For every
cluster in which a particular robot must execute an action
at single level, the confidence level C of the inverse-forward
model of index i is updated according to the following rule:

Ci(t) =

j
Ci(t − 1) + 1, if prediction is coherent
Ci(t − 1), otherwise

(1)

After computing the confidence level of all inverse-forward
model pairs, the action with highest confidence level is se-
lected as the action to be performed within that cluster.
The effectiveness of the proposed approach to generate mul-
tirobot joint action plans is evaluated through the experi-
mental tests hereafter described.

4. EXPERIMENTAL TESTS
The experiments were performed in a realistic scenario il-

lustrating a search and rescue task, where two mobile robots
P3-AT were utilised. Three different people conducted 4 tri-
als of experiments in turns of 2 people per time. A training
session with the duration of 10 minutes took place before the
experiments in order for the participants to familiarise with
the human-robot interface for teleoperation. They were also
given the same instructions for the task execution.

The task consisted in searching for a box which location
was initially unknown and then moving the box to a pre-
defined area, subsequently returning to the base, where the
robots were originally located, as illustrated in Fig. 6.

935



The participants were appropriately accommodated in dif-
ferent rooms, which were carefully chosen for the purpose of
avoiding visual contact and verbal communication. More
importantly, none of the participants was able to visualise
the robots or any part of the environment in which the task
was being executed (for reasons previously discussed in Sec-
tion 2).

In addition, to elicit the execution of a truly joint task,
requiring a tightly coupled collaboration between robots, the
size and weight of the box were rigourously defined so a robot
would not be able to push a box by itself, thus requiring
precisely coordinated manoeuvres of both robots to move
the box around and deliver to the desired destination.

5. RESULTS AND DISCUSSION
The 4 trials were conducted following the procedure de-

tailed in Section 4. Trial 1 contains 502 observations and
trial 2 consists of 534, while trial 3 comprises 729 and trial 4
has 425. The log files containing the observations made by
the robots engaged in the task execution were processed us-
ing the SC algorithm and the HAMMER architecture to
generate the multirobot joint actions plans.

To facilitate the understanding of the group behaviour
segmentation obtained from the SC, Fig. 11 illustrates where
a few sampled points of the trajectories are located on the
map. X and Y axes represent the 2D Cartesian coordinates
of the robots, while Z axis represents time. Different colours
symbolise different clusters.

In trials 1, 2 and 3, the box was originally located in
the right-hand side foyer (area 2 shown in Fig. 6). Based
upon what was witnessed during the experimental tests and
a visual analysis of the Figs. 7(a) (trial 1), 8(a) (trial 2)
and 9(a) (trial 3), the demonstrated task executions can be
described as follows.

Starting from the base, the robots navigated across the
corridor in order to locate the box. At that stage, the robots
were concurrently deploying individual actions. Shortly af-
ter recognising the box, each robot was manoeuvred to a po-
sition so that it could push the box towards the destination
(area 3 in Fig. 6). As a consequence of different exploration
strategies (one could choose to turn left, instead of right,
when leaving the base), the robots did not find the box si-
multaneously. Thus, one of the robots had to wait until the
other was properly positioned to start moving the box. This
outcome can be easily spotted in Figs. 8(a) and 9(a).

Immediately after the operators acknowledged that both
robots were ready to start moving the box, the deployment
of a tightly coordinated joint action started. It was found
by the operators considerably hard to manoeuvre the robots
while moving the box, demanding different periods of time,
requiring correction manoeuvres as the box deviated from
the ideal path, and thus resulting in different trajectories;
nevertheless the box was successfully delivered to the desired
area in all trials. Subsequently, the robots navigated back
to the base, indicating the end of the task execution.

A straightforward interpretation of the Figs. 7(a), 8(a),
9(a) and 10(a) is the realisation of how stochastic the exe-
cution of the same task can be when using real robots, even
though similar initial states and same goal were preserved.

From a thorough analysis of the results obtained, it is
worth highlighting two main issues. Firstly, as discussed
previously, the robots’ pose estimation based on odometry
sensors resulted in incremental shift errors along the Y axis

Figure 11: An illustration of the location of the
robots at particular points within the trajectories
over time, aiming for facilitating the comprehension
of the segmented group behaviour. X and Y are
the 2D Cartesian coordinates of the robots, while Z
represents time.

on one of the robot’s trajectory, which can easily be noticed
in Fig. 10(a). Secondly, as a result of inaccurate pose esti-
mations, the position of the box computed by each robot did
not match when plotting its trajectory along time. Despite
the different trajectories, this issue only marginally affected
the plan generation results.

Robot joint action plans were generated according to the
procedure previously described in Section 3.5. These plans
are represented by text files comprising the total number
of clusters, number of robots involved in the task execu-
tion, total time demanded to accomplish with the task, and
a sequence of robot actions at single level over time. For
the purpose of facilitating the comprehension, bar graphs
showing robot actions at single level over time were appro-
priately generated from the original plan files (Figs. 7(b),
8(b), 9(b) and 10(b)). The characters within the bars rep-
resent the robot action, where “A” denotes Approach, “P”
indicates Push, “S” represents Search, “D” stands for Dock
and finally “I” denotes Idle. The colours were deliberately
chosen to match to cluster colours, and thus ease comparison
between the bar graphs and 3D graphs.

While Fig. 7(b) (trial 1) suggests that the first 3 clus-
ters could potentially represent joint actions (because the
actions of both robots belong to the same cluster and are
approximately synchronised in time), Figs. 8(b) (trial 2)
and 9(b) (trial 3) indicate that these actions are indepen-
dent. Moreover, the actions Search and Approach are in-
trinsically independent, as a robot can execute these actions
without the help of its group mates. Besides the first 3
trials, Fig. 10(b) interestingly indicates that the first 3 clus-
ters are independent actions. However, the cyan-coloured
cluster would possibly not exist if the robots’ pose were ap-
propriately estimated; but nevertheless, the action sequence
is plausible.

When comparing trials 2 and 3 (Figs. 8(b) and 9(b)), the
first 2 clusters are nearly identical. In regards to the actions
at single robot level, while in trial 2 the second action was
selected as Push, in trial 3 the action selected was Idle. Re-
calling that the action selected is the one with the highest
confidence level, in trial 2 the action Approach was probably
not selected for robot 2 because it was already too close to
the box once it recognised it; the action Push was selected
instead. Similarly, in trial 3, robot 2 was required to wait
until robot 1 approached the box for a period of time long
enough to cause the action Idle to have the highest confi-

936



−10

0

10 0
5

10

0

100

200

300

400

500

600

y coord

Spatio−temporal view

x coord

tim
e

(a) 3D view of robots’ spatio-
temporal behaviour segmentation

0 50 100 150 200 250 300

1

2

S

S

S

S

A

A

P

P

P

A

D

I

time

ro
bo

t

Robot actions timeline

(b) Extracted plan of recognised
robot actions along time

Figure 7: Results obtained from trial 1 (colours and characters illustrate the same cluster).

−10

0

10 0
5

10

0

100

200

300

400

500

600

y coord

Spatio−temporal view

x coord

tim
e

(a) 3D view of robots’ spatio-
temporal behaviour segmentation

0 50 100 150 200 250 300

1

2

S

S

A

P

P

P

I

P

P

P

D

D

time

ro
bo

t

Robot actions timeline

(b) Extracted plan of recognised
robot actions along time

Figure 8: Results obtained from trial 2 (colours and characters illustrate the same cluster).

−10

0

10 0
5

10

0

200

400

600

800

y coord

Spatio−temporal view

x coord

tim
e

(a) 3D view of robots’ spatio-
temporal behaviour segmentation

0 100 200 300 400

1

2

S

S

A

I

P

P

P

P

D

D

I

D

time

ro
bo

t

Robot actions timeline

(b) Extracted plan of recognised
robot actions along time

Figure 9: Results obtained from trial 3 (colours and characters illustrate the same cluster).

−10

0

10

0
5

10
0

100

200

300

400

500

x coord

Spatio−temporal view

y coord

tim
e

(a) 3D view of robots’ spatio-
temporal behaviour segmentation

0 50 100 150 200 250

1

2

S

S

A

S P

P

P

I

A

D

D

time

ro
bo

t

Robot actions timeline

(b) Extracted plan of recognised
robot actions along time

Figure 10: Results obtained from trial 4 (colours and characters illustrate the same cluster).

937



dence level within cyan-coloured cluster.
On the other hand, the action Push was accurately se-

lected when both robots started moving the box in all the
trials. This markedly indicates the tightly coupled and syn-
chronised nature of joint actions (in this experiments, the
action Push), which is, perhaps, the most important aspect
of the results obtained, corroborating the multirobot joint
action plan generation approach proposed in this paper.

It is also noticeable that, even though the desired sequence
of actions at single robot level were not provided, the gen-
erated plans suggested a reasonable sequence, usually start-
ing with Search, followed Approach or Push (this one often
tightly synchronised in time), terminating with Dock, with
the action Idle being interleaved when synchronisation be-
tween robots was required (e.g., Fig. 9(b)).

6. CONCLUSION AND FUTURE WORK
This paper consolidates the use of SC in multirobot sce-

narios and advances on the challenging topic of multirobot
plan generation from human-demonstrated task executions,
proposing the novel MRLbD approach.

It was demonstrated in this paper that clustering a series
of group manoeuvres in the spatio-temporal domain results
in a reasonable and realistic group behaviour segmentation.
In addition, a novel approach to learn multirobot joint action
plans – the MRLbD – using SC combined with the HAM-
MER architecture was presented, which yielded to striking
results. These plans can be used by a group of robots to
autonomously attempt to replicate the task executed, pre-
serving the spatio-temporal task execution procedure and
seeking the same goals.

Work is already in progress in order to solve the problem
of inaccurate robot pose estimation using odometry sensors.
The use of visual landmarks, as well as an implementation
of the well-known Monte Carlo Localisation algorithm are
being incorporated into the teleoperation platform for robot
localisation and environment mapping.

The experiments reported in this paper demonstrate that
the MRLbD approach can learn sensible multirobot joint
action plans that can potentially result in autonomous be-
haviour similar to the human-demonstrated task execution.
This is the first stage to a number of useful potential ap-
plications, including learning to program a group of robots
by demonstration, post-event analysis and debriefing for the
RoboCup or other multirobot tasks involving learning over
extended period of time, and for computational architec-
tures that require generating response to the actions of a
group of agents, such as adversarial domains. Future work
will explore such applications.

7. ACKNOWLEDGEMENTS
The support of the CAPES Foundation, Brazil, under the

project No. 5031/06–0, is gratefully acknowledged.

8. REFERENCES
[1] B. D. Argall, S. Chernova, M. Veloso, and

B. Browning. A survey of robot learning from
demonstration. Robotics and Auton. Systems,
57(5):469–483, 2009.

[2] J. Borenstein and Y. Koren. The vector field
histogram-fast obstacle avoidance for mobile robots.

Robotics and Automation, IEEE Trans. on,
7(3):278–288, Jun 1991.

[3] S. Butler and Y. Demiris. Predicting the movements
of robot teams using generative models. Distributed
Auton. Robotics Systems, 8:533–542, 2009.

[4] S. Chernova and M. Veloso. Confidence-based policy
learning from demonstration using gaussian mixture
models. In AAMAS ’07: Proc. of the 6th Int. Joint
Conf. on Auton. Agents and Multiagent Systems,
pages 1–8, New York, USA, 2007. ACM.

[5] S. Chernova and M. Veloso. Teaching multi-robot
coordination using demonstration of communication
and state sharing. In AAMAS ’08: Proc. of the 7th
Int. Joint Conf. on Auton. Agents and Multiagent
Systems, pages 1183–1186, Richland, SC, 2008.

[6] T. H. J. Collett and B. A. Macdonald. Player 2.0:
Toward a practical robot programming framework. In
in Proc. of the Australasian Conf. on Robotics and
Automation (ACRA 2005), 2005.

[7] Y. Demiris and B. Khadhouri. Hierarchical attentive
multiple models for execution and recognition of
actions. Robotics and Auton. Systems, 54(5):361–369,
2006.

[8] T. Fong, C. Thorpe, and C. Baur. Advanced interfaces
for vehicle teleoperation: Collaborative control, sensor
fusion displays, and remote driving tools. Auton.
Robots, 11(1):77–85, 2001.

[9] R. Kelley, A. Tavakkoli, C. King, M. Nicolescu,
M. Nicolescu, and G. Bebis. Understanding human
intentions via hidden markov models in autonomous
mobile robots. In HRI ’08: Proc. of the 3rd
ACM/IEEE Int. Conf. on Human Robot Interaction,
pages 367–374, New York, USA, 2008. ACM.

[10] C. L. Nehaniv and K. Dautenhahn. The
correspondence problem, pages 41–61. MIT Press,
Cambridge, MA, USA, 2002.

[11] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and
R. Siegwart. A comparison of line extraction
algorithms using 2d range data for indoor mobile
robotics. Auton. Robots, 23(2):97–111, 2007.

[12] M. N. Nicolescu and M. J. Mataric. Natural methods
for robot task learning: Instructive demonstrations,
generalization and practice. In In Proc. of the 2nd Int.
Joint Conf. on Auton. Agents and Multiagent
Systems, pages 241–248, 2003.

[13] L. E. Parker. Distributed intelligence: Overview of the
field and its application in multi-robot systems.
Journal of Physical Agents, 2(1):5–14, March 2008.
Special issue on Multi-Robot Systems.

[14] B. Takacs and Y. Demiris. Balancing spectral
clustering for segmenting spatio-temporal observations
of multi-agent systems. In 8th IEEE Int. Conf. on
Data Mining (ICDM ’08), pages 580–587, 2008.

[15] D. Wagner and D. Schmalstieg. Artoolkitplus for pose
tracking on mobile devices. Proc. of the 12th
Computer Vision Winter Workshop 2007
(CVWW’07), February 2007.

[16] J. Wang and M. Lewis. Human control for cooperating
robot teams. In HRI ’07: Proc. of the ACM/IEEE Int.
Conf. on Human Robot Interaction, pages 9–16, New
York, USA, 2007. ACM.

938


